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1. A Numerical Study of Turbulent Vortex Breakdown within a Circular Tube

Abstract

Solutions to the steady, axisymmetric Reynolds-averaged Navier-Stokes equations have been

obtained for turbulent vortex breakdown within a slightly diverging tube modeled after the exper-

imental configuration of Sarpkaya (1995a). Solutions employing both standard and RNG based

two-equation turbulence models were obtained, as were solutions obtained using a full differential

Reynolds stress model. Inlet boundary conditions were derived from experimental data for the

mean flow and turbulence kinetic energy as provided to the author by Sarpkaya (Private Commu-

nication). The differential Reynolds stress model predicted well the experimentally determined

location of breakdown, whereas both two-equation models failed to even predict the occurrence of

breakdown. Failure of the two-equation models is attributed to their inability to accurately

account for Reynolds stress anisotropies.

Introduction

The majority of numerical works concerning vortex breakdown have concentrated on low Rey-

nolds number, laminar, axisymmetric (c.f., Grabowski and Berger (1976)) or three-dimensional

flows (c.f., Spall and Gatski (1991), Breuer and Hanel (1993)). One of the primary contributions

of the numerical works has been to provide insight into the internal structure of vortex breakdown.

However, in most technological applications of interest, the vortex breakdown arises within a tur-

bulent swirling flow, and the applicability of these laminar results to those flows is questionable.

In fact, Sarpkaya (1995a, 1995b) presented experimental results for vortex breakdown in non-cav-

itating, high Reynolds number (up to 225,000) swirling flows and considered the resulting break-

down fundamentally distinct from the various (up to six, depending upon the classification) forms

of laminar breakdown. These high Reynolds number breakdowns are characterized by the lack of

a distinct bubble (immediately following what appears to be the stagnation point the flow expands

in a sharp, nominally axisymmetric cone of turbulent flow) and appear to be the most robust of all

the breakdown forms. Outside of the combustion community (where the breakdown is referred to

as a central toroidal recirculation zone, and where geometries typically include such complicating

factors as dilution jets and rapid expansions, c.f. Hogg and Leschziner (1989)) the only existing

numerical work aimed at studying the internal structure of turbulent vortex breakdown are those

of Bilanin et al. (1977) and Spall and Gatski (1995). The work of Bilanin et al. followed much



along the lines of the steady, laminar axisymmetric calculations of Grabowski and Berger (1976).

Spall and Gatski presented results for the unsteady, 3-D turbulent breakdown of an unconfined

longitudinal vortex employing the algebraic Reynolds stress model of Gatski and Speziale (1993).

Their results showed some qualitative agreement with Sarpkaya's experimental results (i.e.,

robustness, and a lack of asymmetries) but in the absence of common boundary conditions a

closer comparison between the results was deemed unwarranted.

Several distinct approaches to modeling these high Reynolds number swirling flows exist,

ranging from solutions to the Reynolds-averaged Navier-Stokes equations, to large eddy simula-

tions (LES), to direct numerical simulations (DNS). However, to date, DNS and LES simulations

utilizing spectral schemes have been limited primarily to geometrically simple configurations, and

for the case of DNS, the restrictions include relatively low Reynolds numbers (costs scale as the

Reynolds number cubed). Higher-order finite-difference techniques enjoy more flexibility in

terms of geometries and boundary conditions, but with the lack of spectral accuracy, their built-in

low-pass filter may tend to confuse the issue of resolved scales vs. subgrid-scale motions. One

must conclude that in the foreseeable future, it is unlikely that LES or DNS approaches will be

available as computational tools to be utilized in the investigation and solution of turbulent flow

problems in most technologically hnportant applications such as wake-vortex alleviation, subma-

rine non-acoustic stealth, and flame stabilization.

Hence, we are motivated in the present study to employ the Reynolds-averaged Navier-

Stokes equations (RANS) to study numerically vortex breakdown in high Reynolds number turbu-

lent swirling flows. The geometry is modeled after the axisymmetric diverging tube test section

employed in the experimental work of Sarpkaya (1995a, 1995b). Several features contribute to the

complex nature of this flow, including the existence of an adverse pressure gradient (diverging

tube), body forces arising from the strongly swirling flow, and an internal separation point (at

breakdown). Thus, although the geometry is somewhat simplified from that of (for instance) most

combustors, many of the features contributing to the complex turbulent flow are present, and it

represents an excellent test case to ascertain the capabilities of the RANS. To the extent possible,

the suitability of both 2-equation and differential Reynolds stress closure models in predicting

these flows will be evaluated.



Numerical Method and Boundary Conditions

The pressure-based finite-volume code Fluent (Fluent, Inc., Lebanon, NH) has been utilized to

solve the Reynolds-averaged Navier-Stokes equations. A formulation employing cylindrical-polar

velocity components was used to reduce numerical diffusion. Interpolation to cell faces was per-

formed using a blended second-order upwind/central difference scheme (Maruszewski 1991).

Pressure-velocity coupling was based upon the SIMPLEC procedure (c.f., Patankar 1980).

Both standard and Renormalization Group (RNG) based K- e, and differential Reynolds

stress models (DSM) have been employed. It is well known that in regions of high strain rate the

standard K - e model produces excessive levels of turbulence kinetic energy, leading to high val-

ues of the isotropic turbulent viscosity. As a result, the model may overpredict the radial diffusion

of momentum in strongly swirling flows, leading to an overly rapid decay of maximum swirl

velocities. The RNG based models have been shown to produce results superior to the standard

K-e model for flows with high streamline curvature and strain rate (Yakhot et al. 1992). The

RNG model is similar in form to the standard K - e model except for the addition of a rapid strain

term (R) in the dissipation equation which is written in cartesian tensor form as:
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In addition, v t = C_tK2/e, r I = SK/e, and S = (2SijSij) 1/2 (where Sii is the strain rate).

(Note that in regions of large strain rate the sign of _' changes, with the effect of decreasing v t .)

For the standard K - e model, R - 0. An additional feature of the RNG model is that no empiri-

cal constants appear in the equations. Theoretical analysis yields C, = 0.084, C_t = 1.42,

Ct2 = 1.68, cre = 0.72, f5 = 0.012 and rl0 = 4.38 (c.f. Yakhot et al. 1992) which may be

compared with the values employed for the standard K-e formulation of C a = 0.09,



We note that in the past, other modifications to the standard K-e model have been

applied to the dissipation rate equation in an effort to improve predictions for swirling flows.

These are primarily (ad-hoc) Richardson number modifications to the sink or source terms, and

have met with only limited success (c.f., Srinivasan and Mongia 1980).

The advantage of Reynolds stress models is that they inherently account for the effects of

streamline curvature, body forces and rotation. In the present work, the Reynolds stress model

closure assumptions are based upon the assumptions provided in Launder et al. (1975) and Gibson

and Launder (1978). In particular, the pressure-strain term (dPij) is modeled as

e /"";7___ , _rijK ) _f3ijP )O( i = _Ul_Ui Uk -C2(Pij- (3)

1 (and Pii is the production term) and the values of the constants C 1 and C 2 arewhere P = _Pii

given as 1.8 and 0.60, respectively. The wall reflection terms responsible for redistribution of the

normal stresses near the wall were not included, however this should not be problematic since we

are primarily interested in the vortex core region where contributions from these terms would be

small. The dissipation term was modeled by an isotropic dissipation rate while diffusion was

modeled by a gradient approximation.

For each of the models, standard equilibrium wall functions were used to implement the

duct wall boundary conditions. This eliminated the need for an overly fine grid near the wall,

which again, is far removed from the primary area of interest--the vortex core region.

The course of the numerical study has been guided by experimental data provided to this

investigator by Professor Sarpkaya (Private Communication). In particular, experimental data in

terms of the mean flow and turbulence kinetic energy profiles were utilized to derive the inlet

boundary conditions. (Lacking further experimental data, for the DSM the Reynolds shear

stresses were set to zero. Of course, the turbulence is not isotropic, and in the future it is intended

that calculations be performed employing the complete experimental Reynolds stress distribu-

tion.) For each of the models the dissipation rate at the inlet was specified through the relation:

_3/4 K 3/2

e = Co. l (4)

where the length scale l was taken as the radius of the vortex core. The inlet distributions of the



mean velocities (where fi and _ represent axial and ,azimuthal velocities, respectively) and the

turbulence kinetic energy and dissipation rate are shown in Figs. (la,b). (Velocities and lengths

have been made dimensionless with respect to the inlet mean axial velocity and tube radius,

respectively.) Figure (la) reveals that the core radius (defined as the radius of maximum swirl

velocity) at the inlet is approximately 0.06. In addition, the high levels of turbulence kinetic

energy associated with the vortex are confined within a radius of approximately 0.12.

Results

The calculations to be presented were performed on a 150x71 grid with significant stretch-

ing toward the duct centerline, duct outer wall, and (axially) near the breakdown region. At the

inlet, approximately 10 grid points were contained within the vortex core. A grid resolution study,

performed by doubling the number of grid points in each direction, did not significantly alter the

results. (A comparison between coarse and fine grid calculations is provided later in this section.)

All calculations were performed at a Reynolds number (based upon mean axial velocity and tube

diameter at the inlet) of 130,000.

Shown in Figs. (2a-c) are contours of mean axial velocities computed using the standard

K- e, RNG based K- e, and DSM, respectively (with the vertical scales being expanded by a

factor of 10 for clarity). We note that the experimentally determined location of breakdown ranges

between x = 3.3 and x = 4.6 (fluctuating somewhat in time). Both the standard and RNG-

based K- E models failed to predict the occurrence of vortex breakdown. In fact, the models pro-

duced quite similar results, with minimum mean axial velocities along the vortex centerline on the

order of _ = 0.8. As discussed in the previous section, one explanation for this failure may be

due to the dissipative nature of the two-equation models. That is, due to high levels of apparent

viscosity the swirl velocities decay so rapidly that the flow remains supercritical (i.e., flow pertur-

bations are swept downstream) and no breakdown occurs. This line of reasoning will be further

investigated in the paragraphs to follow.

The full DSM performs much better. Although the flow does not actually stagnate, the

characteristic sudden deceleration of the axial velocity is present, and leads to a minimum of

fi = 0.09 along the axis at the point x -- 3.33 (this level of detail is not discernible from the fig-

ure). However, whether or not an actual stagnation point occurs in the experiments is still an open



question (Sarpkaya, Private Communication). What is clear however, is the absence of a large

bubble-like region that is the hallmark of the observed laminar, nominally axisymmetric break-

downs. Downstream of breakdown, the DSM predicts a very slow recovery of the axial velocity.

This behavior is considerably different than that of 2-equation models, which (when sufficient

swirl is present to promote breakdown) tend to predict a rapid recovery of the mean axial velocity.

Although detailed experimental data is not available, results describing the bounding breakdown

"envelope" are reasonably consistent with flow visualization studies of Sarpkaya (1995a, 1995b).

It is also noted that a set of calculation was also performed using the DSM model in which

only (inviscid) tangency conditions were enforced at the tube walls. The results were considerably

modified, with the location of breakdown moving downstream into the constant radius section of

the tube to x- 11.5. However, the structure of the breakdown (in terms of mean velocity profiles)

remained virtually unchanged. Hence, although the tube walls are rather far removed from the

vortex core (recall that the radius of the vortex core is roughly 6% of the tube radius) the modeling

of the wall boundary layer appears essential if one wishes to accurately predict the location of

breakdown. This is likely due to the effect that the no-slip condition has on the circumferential

velocity profiles within the tube, and is likely not due to the effects of an increasing displacement

thickness. An increasing displacement thickness would tend to accelerate the mean axial velocity

and force the breakdown further downstream, opposite the results observed in these calculations.

Shown in Figs. (3a-c) are contours of constant mean circumferential velocity for the stan-

dard K-e, RNG based K-e and DSM, respectively. (To increase clarity, only the region

0 -: x < 5 is shown.) These results confirm our earlier suggestion that the swirl velocities decay

much more rapidly for the 2-equations models than for the DSM. Simply by examining the con-

tour levels one can ascertain that the profiles for the 2-equation models remain supercritical.

Hence it is not surprising that no breakdown occurs, and that the centerline axial velocities remain

nearly constant over the downstream section of the duct (as shown in Figs. (2a,b)). Also shown in

Fig. (3d) are the results for the DSM calculated using a 300x140 grid. Clearly, no significant

changes in the results occurred, and the original grid resolution was deemed adequate. (High res-

olution calculations for each of the 2-equation models also confirm the adequacy of the original

resolution.)

The interesting question concerns whether or not high levels of diffusivity are responsible



for the poor performance of the 2-equation models. We attempt to answer this question by exam-

ining contours of constant turbulence kinetic energy, in Figs. (4a-c), and apparent viscosity,

C¢K2/_, in Figs. (5a-c). In terms of the turbulence kinetic energy, the results for each of the 3

models are similar. In fact, the K - E model predicts levels of turbulence kinetic energy closer to

the DSM than does the RNG model. Recall that the RNG model includes a rapid strain term, and

different values for the coefficients (specifically, C_2 ) such that it tends to predict lower levels of

turbulence kinetic energy than does the standard model. We see that trend here, albeit the lower

levels predicted by the RNG model are not predicted by the DSM. (Although it is not suggested

that the DSM should set the standard for comparison.)

Combined with the dissipation rate, these profiles of turbulence kinetic energy can be used

to compute the apparent turbulence viscosity, shown in Figs. (5a-c). Here, the levels of turbulence

kinetic energy predicted by the RNG model are manifested in notably decreased levels of appar-

ent viscosity. For instance, over the region in which we expect the breakdown to form (2 < x < 3)

the RNG model predicts levels of v t approximately 2.5 times below that of both the standard

K- _ and DSM models. In fact, the distribution of v t for the K - E and DSM models is quite sim-

ilar. Yet, this difference in the apparent viscosity between the 2-equations models is not mani-

fested as a notable difference between the respective mean velocity profiles. Hence, it does not

seem that the failure of the 2-equation models should be attributed solely to excessive levels of

apparent viscosity. Rather, it is more likely that the failure of these models should be attributed to

their inability to properly account for Reynolds stress anisotropies.

Conclusions

In summary, the Reynolds stress model appears to predict quite well the location of the onset of

turbulent vortex breakdown in a slightly diverging pipe, based upon the experimental results, pro-

vided to this author by Professor Sarpkaya. This result is quite encouraging in that only profiles

for the mean flow and turbulence kinetic energy were available as inlet boundary conditions.

(Even these quantities are not likely to be available in most industrial applications involving tur-

bulent swirling flows.) In addition, the lack of a large recirculation region agrees qualitatively

with experimental results. It also turned out that the inclusion of no-slip wall boundary conditions

had a large effect on the predicted location of breakdown.



As expected,theperformanceof the2-equationK - E models was totally inadequate, and

their use for vortex breakdown flows must be discouraged. However, rather than attributing the

failure of the 2-equation models on excessive diffusivity, it is concluded that the real problem

likely lies in the failure of the 2-equation models to accurately predict the Reynolds stress

anisotropies. Pending the availability of experimental data, future work will concentrate on more

quantitative aspects of the DSM predictions, such as a comparison between experimental and

numerical results for the Reynolds stresses upstream and downstream of breakdown.
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2. Literature Review: Navier-Stokes Solutions for the Tip-Vortex Problem

Tip vortices shed from finite span lifting surfaces are of considerable technological importance.

For example, tip vortices contribute to tile induced drag of the generating surface, a situation that

is exasperated for low aspect ratio surfaces such as marine propellers. The pressure driven flow

about the tip of the lifting surface also decreases the efficiency of fluid dynamic devices such as

axial compressors and turbomachine blades. Perhaps the application that has received most atten-

tion is the "wake-vortex interaction" problem in which trailing wing-tip vortices pose a hazard to

smaller following aircraft. In fact, the FAA dictates the frequency of aircraft take-offs and land-

ings at the nation's airports by accounting for the presence and demise of these l ift-generated vor-

tices. Another vortex-structure interaction problem of considerable importance is the blade-vortex

interaction that occurs when vortices shed from a helicopter rotor blade interact with a following

blade. The resulting large, unsteady forces may attribute to premature blade failure.

Vortex-structure interaction problems have received considerable attention from the aero-

space industry. Of primary interest here is the wake-vortex problem, and in particular, efforts at

computational simulations of the tip-vortex. Computational efforts in this area have been ongoing

for only about a decade, which is a testimony to the difficulties inherent in the problem. These dif-

ficulties are two-fold. First, the computational resources required to attack the problem are con-

siderable, limiting the earliest calculations which were performed on Cray 1 and Cray XMP class

machines. Second, and equally important, the structure of the turbulence within the tip-vortex is

highly non-isotropic, and thus turbulence models typically used in wall bounded aerodynamic

flows such as the Baldwin-Lomax model are not adequate to model the tip vortex. These are the

primary issues of concern. Progress made in addressing these (and closely related) issues over the

past decade will be discussed in the paragraphs to follow.

One of the earliest sets of calculations were those of Mansour (1985) in which the thin-

layer Navier-Stokes equations were solved for the flow over a low aspect ratio swept wing at a

free stream Mach number of 0.8, with the turbulence viscosity being computed using a two-layer

Baldwin-Lomax model. Srinivasan et al. (1988) solved the thin-layer Navier-Stokes equations

with a Baldwin-Lomax turbulence model for the flow over several different wings, with several

different tip configurations. The above studies showed reasonable agreement with surface pres-

sures, however no comparisons between numerical and experimental results were presented for

11



the structure of the resultant tip vortex. However, with the fairly coarse grids employed (in the

region of the vortex core) and by modeling the turbulence viscosity using a Baldwin-Lomax tur-

bulence model, considerable differences would undoubtedly exist.

An effort to address some of the modeling and resolution difficulties inherent in the above

studies was made in Dacles-Mariani et al. (1995). They obtained solutions to the full Navier-

Stokes equations using the INS3D-UP code (Rogers 1991) with a modified version of the 1-equa-

tion turbulence model of Baldwin-Barth (1990). (The production term was modified in an effort

to suppress the eddy viscosity in the vortex core.) The airfoil section consisted of a NACA 0012

with a rounded tip and an aspect ratio of 0.75. In essence, they were attempting to model the

experiments of Chow et al. (1991) which took place in the 32 in. x 48 in. low speed wind tunnel at

the Fluid Mechanics Laboratory of NASA Ames Research Center. That experimental study essen-

tially provided the first set of data available for use in validating numerical models of the near

field tip vortex. Due to the relatively large wind-tunnel blockage by the model, the tunnel walls

were included in the numerical simulation. Several distinct problems were solved in this work: 1)

a wake case in which experimental data for the velocity profiles on a crossflow plane at the trail-

ing edge of the wing was imposed as the inlet boundary conditions, 2) an analytical vortex case

(Rott vortex) used to investigate grid resolution, and 3) the complete geometry (at a chord Rey-

nolds number of 4.6 million). The results of the wake case indicated that 3rd-order differencing

for the convective terms was too dissipative for the grids considered. Results from the analytical

vortex case indicated that 15-20 grid points are needed in the vortex core region to adequately

resolve the flow. This translated to a grid spacing of approximately 5x10-3c (where c is the

chord) in the region of the vortex core. Based upon the above results, calculations for the com-

plete geometry were computed using a fifth-order scheme, with grid spacings in the vortex core of

0(5x10-3c). Converged results took on the order of 25 hours of Cray C90 time. In general their

results, in terms of surface pressures and streaklines, compared will with experimental data. How-

ever, the tip vortex formation was still not sufficiently predicted.

Most recently, Hsiao and Pauley (1996) investigated the tip vortex formation over a NACA

0015 rectangular airfoil with a rounded tip of aspect ratio 3. They too employed the INS3D-UP

code with fifth-order upwinding of the convection terms. Their numerical results were compared

with the experimental data of McAlister and Takahashi (1991) at a Reynolds number of 1.5 mil-

12



lion andat anangleof attackof 12 ° . One significant difference in their grid generation procedure

was that a two block H-H grid was employed, with more grid points being allocated to the upper

(suction side) block. They report that, within the vortex core, at least 17 grid points were included

in the crosswise direction and 28 points in the spanwise direction. The primary result to come out

of this study is that the Baldwin-Barth turbulence model can not be expected to adequately model

the wing tip vortex, and that higher-order turbulence modeling will likely be required. This result

will undoubtedly become even more apparent as calculations such as these are extended beyond a

few chords downstream from the trailing edge. In that case, one- and two-equation models (such

as the standard K- e model) can be expected to vastly overpredict the rate of decay of the vortex.

The above few studies essentially represent the state-of-the-ann in the numerical prediction

of the formation of wing tip vortices. We mention that similar work has been performed for the

formation of the tip vortex off helicopter rotor blades. The numerical procedure and requirements

are essentially identical to the fixed wing case, with the exception of the possible (complicating)

inclusion of the rotor wake. The existing studies include those of Srinivasan and McCroskey

(1988), Wake and Sankar (1989) and Srinivasan et al. (1992). However, these studies all suffer

from the same deficiencies as the earlier fixed wing studies; that is low resolution and/or inade-

quate turbulence modeling. The studies of Srinivasan and McCroskey (1988) and Srinivasan et al.

(1992) also were limited to solutions of the thin-layer Navier-Stokes equations. To summarize, the

following issues and/or conclusions have arisen from studies over the last decade of the near-field

wing-tip vortex:

1) Turbulence modeling. To date, the "best" turbulence model that has been applied to the

near-field wake-vonnex problem is a modified form of the 1 equation Baldwin-Barth model.

Higher-order models need to be implemented.

2) Grid resolution. Grid resolution requirements within the vortex core are extremely

demanding. A minimum of 10 grid points should be placed within the vortex core, the radius of

which is on the order of a few percent of the wing chord. Grid spacings to the first point off the

wing of O(10-6)C tO O(10-5)C are required.

3) Higher-order differencing schemes. Second- and third-order upwind schemes for the

convection terms may be too diffusive (for grid densities that are attainable with todays computer

hardware).

13



4) Differences in the flow fields due to different wing-tip caps are confined to the outer 5%

to 10% of the wing span. However, in this region the differences can be significant.

5) Experimental data. Reliable experimental data, including detailed measurements of the

individual Reynolds stress components within the tip vortex, are needed to further verify the

numerical models.

14



3. Preliminary Work on Numerical Calculations of the Near-Field Wing-Tip

Vortex

A long term study concerning the formation and dissipation of wing-tip vortices has been initi-

ated. The study is being divided roughly into two related problems: 1) the formation of the near

field wing-tip vortex, and 2) the far-field vortex, including mechanisms of demise. The problems

inherent in numerical simulations of the near field vortex have been outlined in the literature

search. Clearly, proper prediction of the vortex structure in the near field is required before an

attempt to predict the decay of the vortex structure over hundreds of chords downstream is under-

taken. Problems that will undoubtedly manifest themselves in predicting the far field include tur-

bulence modeling and resolution. As with the near field prediction, proper accounting for

Reynolds stress anisotropies is a necessity if one is to avoid the overly diffusive solution inherent

in standard K- e modeling assumptions (as was demonstrated in Section 1).

Predicting the vortex bursting event presents its own set of problems. The bursting phe-

nomena takes place over length scales on the order of the vortex core. In regions far removed from

local "events" such as bursting, the flow is essentially parabolic in the streamwise direction. In the

region of bursting, the flow is elliptic. However, a priori prediction of the location of a burst event

is not possible, and this presents modeling problems from the standpoint of computational effi-

ciency. This problem has not been addressed in the work to date.

Currently, an effort is being made to model the steady, near field vortex structure (which

will provide inlet boundary conditions for modeling the far wake region) using a standard high

Reynolds number K- e model, and the algebraic Reynolds stress model of Gatski and Speziale

(which fits into the 2-equation framework) as implemented in the ISAAC code. The effort will

attempt to quantify differences in the vortex structure and decay rate as predicted by the two mod-

els. Upon completion of these calculations, a full differential Reynolds stress model will be imple-

mented. Initial results are being computed for a NACA 0015 square tip airfoil at a Reynolds num-

ber of 1.5 million. This configuration has been chosen due to the relatively large amount of (near

field) experimental data available in the work of McAlister and Takahashi (1991) (this case repre-

sents their "baseline"). An initial coarse H-C grid structure has been generated with 105 points in

the streamwise direction, 51 points in the wall normal direction, and 93 points in the spanwise

direction. A representation of this wing/grid configuration is shown in Fig. 6. Adequate grid reso-

15



lution in the vortex core region is quite important, and local grid refinement in the core area will

be performed to ensure a grid converged solution. Preliminary results for this configuration

obtained using a K- e model are shown in Fig. 7 in terms of velocity vectors (on the plane

x = 1.1, where 1.0 represents the trailing edge of the airfoil). Work in the immediate future will

concentrate on improved grid clustering in the vortex core region, a task that is not trivial since the

vortex quickly migrates inboard as it forms over the wing and trails downstream.

16
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a) K- e model

b) RNG-based K-e model

c) differential Reynolds stress model
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